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SUMMARY 

An investigation w a s  carried out i n  the Langley 11-inch hypersonic 
tunnel at  a Mach number of 9.6 t o  determine the longitudinal aerodynamic 
character is t ics  of a variety of l i f t i n g  body shapes with sharp leading 
edges of varying cross section and nose bluntness. 
the variations i n  l i f t ,  drag, and pitching-moment characterist ics of 
these configurations due t o  changes i n  the body geometry and compares pre- 
dicted values of maximum l i f t  and maximum l i f t -drag r a t i o  from Newtonian 
theory with those obtained experimentally. The resu l t s  of limited t e s t s  
on vehicles of varying leading-edge bluntness indicate t h a t  leading-edge 
r ad i i  representative of r e a l i s t i c  vehicle design, i n  general, have small 
e f fec ts  on the longitudinal characterist ics of the vehicle. 

This paper presents 

The flat-bottom configurations were generally found t o  have higher 
values of maximum l i f t  and l i f t -drag  r a t i o  than the round-bottom shapes. 
Eliminating the drag-producing, low-lift  regions of the round-bottom half- 
cones did, however, provide a considerable increase i n  the maximum l i f t  
and l i f t -drag  r a t i o  of these configurations. Span-height r a t i o  w a s  found 
t o  produce different  variations i n  the values of maximum l i f t  and maximum 
l i f t -drag  r a t i o  of a l l  e l l i p t i c  half-cone bodies depending upon the body 
geometric parameter selected as a basis  of comparison. Bodies of constant 
planform and, t o  a l e s se r  degree, vehicles of constant volume showed an 
increase i n  maximum l i f t  as body span-height r a t i o  w a s  increased. However, 
increasing body span-height r a t i o  resulted i n  a reduction of maximum l i f t -  
drag r a t i o  and an increase i n  maximum l i f t  f o r  vehicles of constant height. 
Variation i n  nose cant w a s  found t o  produce l i t t l e  change i n  the maximum 
l i f t  and l i f t -drag r a t i o  of the flat-bottom half-cone ser ies  f o r  values of 
nose bluntness r a t i o  up t o  0.6. 
lift and l i f t -drag r a t i o  from Newtonian theory with values obtained exper- 
imentally indicates tha t  t h i s  theory provides a useful means of estimating 
the trends produced i n  vehicles of these types. 

A comparison of predictions of maximum 
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INTRODUCTION 

Numerous studies have pointed out improvements i n  corridor width, 
l a t e r a l  and longitudinal range control, and peak decelerations which 
may be realized through use of aerodynamic l i f t  during vehicle reentry 
in to  the ea r th ' s  atmosphere (refs .  1 t o  5 ) .  Since current trends i n  
the design of o rb i t a l  and lunar reentry vehicles focuses on configura- 
t ions  composed of full o r  p a r t i a l  conic, e l l i p t i c ,  and spheric bodies 
of revolution, it would be highly desirable t o  know the aerodynamic 
character is t ics  of these body shapes tnroughout the angle-of-attack 
range over which they might operate. 

A ra ther  complete discussion of the hypersonic longitudinal char- 
ac t e r i s t i c s  of sharp full-cone configurations i s  presented i n  refer- 
ence 6. However, only a very limited amount of data is  available f o r  
the more generalized body shapes at high Mach numbers and over a wide 
range of angle of attack. 

In  order t o  provide longitudinal data on a number of the basic 
body shapes mentioned, an extensive investigation was i n i t i a t e d  i n  the 
Langley 11-inch hypersonic tunnel at a Mach number of 9.6 t o  study the 
hypersonic longitudinal character is t ics  of a wide variety of gener- 
a l ized body shapes of varying geometry. These configurations include 
full-cones, round-bottom half-cones, and e l l i p t i c  half-cones of varying 
bluntness, flat-bottom half-cones of varying types and amounts of nose 
bluntness, and conic-sectored body shapes. Tests were conducted 
throughout an angle-of-attack range from 0' t o  60'. 

Most of the model's studied during t h i s  investigation had sharp 
leading edges. However, p rac t ica l  reentry vehicle design generally 
requires some degree of nose and leading-edge rounding t o  provide sat- 
isfactory reentry heating character is t ics  i n  the v ic in i ty  of these 
leading edges. 
and without nose and leading-edge rounding t o  determine the e f fec t  of 
t h i s  blunting on the longitudinal character is t ics  of these configurations. 

Several representative model shapes were tes ted  with 

Some preliminary data obtained during t h i s  investigation are pre- 
sented i n  reference 7. The present paper presents basic longitudinal 
aerodynamic character is t ics  of a l l  the configurations tes ted  during 
t h i s  study and compares the e f f ec t s  of such geometric variables as nose 
bluntness and cant of c i rcular  cones and body span-height r a t i o  of 
e l l i p t i c  cones on the maximum l i f t ,  maximum l i f t -drag  ra t io ,  and pitching 
moment of the various ser ies  of configurations tested. 
dictions of the l i f t -drag  character is t ics  are a lso included f o r  a number 
of these configurations i n  order t o  access the usefulness of t h i s  theory 
i n  estimating the character is t ics  of these 
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SYMBOLS 

height of e l l i p t i c  half-cone ver t ica l  semiaxis, in .  
(see f ig .  l ( d ) )  

span of e l l i p t i c  half-cone horizontal semiaxis, in.  
(see f ig .  l ( d ) )  

l i nea r  viscosity coefficient 

drag coefficient FD/&,s 

average skin-friction coefficient 

l i f t  coefficient, F~/&,s 

pitching-moment coefficient, M~/Q,SD 

maximum body diameter, in .  

drag force, l b  

l i f t  force, l b  

body height a t  juncture of nose and afterbody, in.  

body length, in. 

body length of the unblunted conic body, in .  

l i f t -drag ratio,  CL/CD 

pitching moment, in-lb 

Reynolds number 

dynamic pressure, lb/sq in .  

effective dy-namic pressure, lb/sq in.  

l oca l  radius, in. 

maximum body radius, in .  
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Subs c r ip t  s : 
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W 

area, sq in.  

horizontal distance from body base t o  center of gravity 

ve r t i ca l  distance from body center l ine  t o  center of 
gravity, in .  

angle of attack, angle between 
stream flow direction, deg 

nose cant angle, deg ( f ig .  l(g 

cone semiapex angle, deg 

body axis and free- 

) 

equivalent cone semiapex angle, t an  - , deg 
2 t  

e l l i p t i c  cone horizontal semiapex angle, deg 

elliptic-cone ve r t i ca l  semiapex angle, deg 

body rad ia l  cutoff angle, deg 

base 

loca l  

maximum 

minimum 

pbIlf0IlU 

wetted 

free stream 

MODELS 

Drawings showing the model details and dimensions of the config- 
urations tes ted  during t h i s  investigation are presented i n  figure 1. 
Photographs of representative models of each ser ies  of body shapes are 
presented i n  figure 2. 
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?%- The first se r i e s  of models shown i n  figure l ( a )  consisted of a 
(e,> group of spherically blunted fu l l  cones varying i n  cone half-angle 

from loo t o  40° and having a nose bluntness r a t i o  (h/R) equal t o  0.2. 
The nose bluntness r a t i o  of these and subsequent models i s  defined as 
the r a t i o  of the height between the nose tangency point and the model 
axis t o  the base radius. The ser ies  of spherically blunted round- 
bottom half-cones shown i n  figure l ( b )  a lso varied i n  cone half-angle 
from loo t o  400 and i n  values of nose bluntness from 
h/R = 0.6. I n  order t o  obtain an end point when examining the effects  
of nose bluntness on the character is t ics  of the round-bottom half-cone 
bodies, a round-bottom quarter-spheric body (see f ig .  l ( c ) )  was  a l so  
tested.  
varied i n  ve r t i ca l  semiapex angle ( e x z )  from 10' t o  30° and i n  nose 
bluntness r a t i o  from 0 t o  0.4 f o r  two values of body span-height ra t io ,  
b/a = 0.5 and b/a = 2. 
sectored bodies shown i n  figure l ( e )  f o r  which nose bluntness r a t i o  w a s  
varied from 0 t o  0.4. 
half-angle 8, of loo had a conic sector t ha t  varied from $d = Oo (a 
half-cone) t o  a value of 
a value of 

h/R = 0 t o  

The e l l ipso ida l ly  blunted e l l i p t i c  half -cone ser ies  ( f ig .  1( d) ) 

Tests were a lso made on a ser ies  of conic- 

One configuration ser ies  having a value of cone 

$ = 60°. A conic-sectored body ser ies  having 
e $ = 4 3 O  w a s  a lso t e s t ed  f o r  three values of cone half-angles, 

e, = ioo, 150, and 20°. 

i*a Two ser ies  of flat-bottom half-cone bodies were also tested.  Fig- 
ure 1( f ) shows a ser ies  of spherically blunted half-cone configurations 
varying i n  cone half-angle from loo t o  40° f o r  two  values of bluntness 
ra t io ,  h/R = 0 and h/R = 0.4. Another se r ies  of flat-bottom con- 
figurations, shown i n  figure l ( g ) ,  consisted of a group of 10' half- 
angle cones varying i n  nose cant angle (sm) from 90° t o  45' and i n  nose 
bluntness r a t i o  from 0.2 t o  0.8. 

The centroid of the side-view area w a s  chosen as the center-of- 
gravity posit ion shown i n  figure 1 and represents the moment reference 
center used only f o r  comparing the e f fec ts  of varying vehicle geometry 
on the pitching-moment character is t ics  of the various model ser ies .  
Maximum body diameter w a s  used as the reference length f o r  all the 
moment data presented. 

APPARATUS AND TEST PROCEDWS 

These t e s t s  were conducted i n  the Langley 11-inch hypersonic tun- 
ne l  at an average Mach number of 9.6 and an average stagnation pressure 
of 1,350 in .  Rg absolute. Stagnation temperature w a s  maintained a t  an 

Test section 
Reynolds number based on the t e s t  conditions was  approximately 

8 
average value of 1,150° F f o r  a l l  t e s t  r e su l t s  presented. 
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0.11 X 10 6 per inch. 
1.9 X 10-5 pounds of water per pound of dry air. 

Absolute humidity was  kept t o  a value l e s s  than 

L i f t ,  drag, and pitching moment were obtained by means of a six- 
component in te rna l  strain-gage balance mounted through the base of the 
model. The angle of attack of the  models, the angle between the model 
axis and the free-stream flow direction, was measured opt ical ly  by means 
of a lens  prism attached t o  the model base which reflected a pofnt- 
source l ight beam onto a calibrated scale. This method allowed the t rue  
angle of attack of the model t o  be determined irrespective of the deflec- 
t i on  of the balance and s t ing  under load. Base-pressure measurements 
were recorded during each t e s t  run; however, calculations showed t h a t  
at  a Mach number of 9.6, base-pressure corrections t o  the drag coef- 
f i c i e n t  were negligible (much lower than the balance measuring accuracy) 
and were therefore neglected. 

L 
1 
4 
3 
7 

T e s t  r e su l t s  f o r  a l l  the configurations considered i n  t h i s  inves- 
t iga t ion  were obtained i n  the test-section core f ree  from boundary- 
layer  e f f ec t s  (approximately 4 inches square, ref. 8) except i n  the 
case of a few of the sharp-nose more slender configurations (0, = l o o )  
where nose sections did extend in to  the tunnel boundary layer  a t  the 
higher angles of a t tack (a > 4 5 O ) .  This would be expected t o  have a 
negligible e f fec t  on the l i f t  and drag forces of the configuration 
since the area affected would be very small i n  the nose region of these 
cones. However, pitching moment would be somewhat more questionable 
i n  t h i s  angle-of-attack range because of the large moment arm over 
which the incremental force changes would act .  Therefore, the pitching- 
moment data presented f o r  the more slender models i n  t h i s  angle-of- 
attack region should be useful only t o  indicate trends. 

ACCUFtACY OF DATA 

With base area as the reference area and body diameter as the 
reference length, the average probable e r rors  i n  the force and moment 
coefficients f o r  the  various t e s t  points due t o  the force balance 
system are  as follows: 

c ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  m.06 

k............................... i-o.06 
CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  M.04 

Since average probable e r ror  i s  dependent upon the area and reference 
length of the configuration, these probable e r rors  are representative 
of values f o r  an average configuration studied during t h i s  investigation. 
The more slender model shapes had smaller than average areas and reference 
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lengths and could possibly have a probable e r ro r  somewhat higher than 
those l i s t e d  whereas the probable e r ror  f o r  the larger  half-angle bodies 
would be expected t o  be smaller. 

The l imited s ize  of the bodies that could be tes ted  during th i s  
investigation necessitated mounting these models on the balance i n  such 
a manner tha t  the balance moment center w a s  located some distance behind 
the model base. The calculated accuracy i n  the moment data w a s  deter- 
mined about a body reference center located at  the juncture of the body 
axis and the base. Since errors  i n  moment data are a function of bal- 
ance measuring e r ro r  i n  normal force times the t ransfer  r a t i o  (T/D) as 
well as a function of measuring e r rors  i n  moment, moment data presented 
about the model center of gravity could have a considerably larger  prob- 
able e r ro r  than that indicated. This i s  par t icular ly  t rue  f o r  the more 
slender configurations because of the increased moment t ransfer  distance 
involved. For t h i s  reason, data about t h i s  more forward center-of- 
gravity location are useful only t o  indicate trends i n  the moment char- 
ac t e r i s t i c s  of these configurations about a somewhat more r e a l i s t i c  
moment center. 

Since the strut mechanism of the 11-inch hypersonic tunnel can 
operate through a strut angle of only 30°, it w a s  necessary t o  use a 
dual-position model-mounting procedure i n  order t o  cover the f u l l  angle- 
of-attack range presented i n  t h i s  paper. 
f o r  each model tes ted  t o  cover the en t i re  a range, 0' t o  30' and 30' 
t o  600. The rather  good agreement i n  the duplicated data near a = 30°, 
resul t ing from the overlapping between the two runs, indicates the 
accuracy with which data can be obtained using a dual-mounting procedure 
t o  cover a wide range of angle of attack. 

Two steps o r  runs were required 

Angle of a t tack w a s  measured within m.10' of the nominal value and 
The stagnation pressure w a s  Mach number w a s  determined t o  within kO.05. 

measured t o  an accuracy of k2.0 i n .  Hg. 

PRESENTATION OF DATA 

The basic longitudinal aerodynamic character is t ics  ( CL, %, L/D, 
%) obtained during t h i s  investigation are  presented i n  figures 3 and 

t o  24 f o r  each of the configurations tested.  
plots,  the configuration base area w a s  used as the reference area and 
the juncture of the model axis and base as the moment reference center. 

For these basic data 

I n  order t o  evaluate the e f f ec t s  of varying such geometric param- 
e t e r s  as nose bluntness, body cross section, and nose cant, a compar- 
a t ive study w a s  made of the longitudinal character is t ics  of the various 



se r i e s  of configurations investigated. The r e su l t s  of t h i s  comparison 
are  presented i n  f igures  25 t o  34 and show the variation i n  
(L/D)-, and C, as a function of the different  geometric variables 

studied. When comparing the maximum l i f t  character is t ics  of these con- 
figurations,  the model projected planform area w a s  chosen as the re f -  
erence, ra ther  than the base area used i n  f igures  3 t o  24, since it 
more nearly represents the l i f t i n g  surface of the model and provides a 
more r e a l i s t i c  bas i s  f o r  comparing the l i f t  character is t ics  of the var- 
ious body shapes. The pitching-moment comparisons were based on a more 
r ea l i s t i c ,  although arbi t rary,  moment center located at  the centroid of 
the side-view area but s t i l l  retained the body base area as the refer-  
ence area i n  order t o  re ta in  consistency with data presented i n  refer-  
ence 7. 

CL,-, 

RESULTS AND DISCUSSION 

Numerous shape variables, such as nose bluntness, body cross sec- 
tion, body apex angle, and leading-edge bluntness, have been studied f o r  
a var ie ty  of l i f t i n g  bodies t o  determine the e f f ec t  tha t  these varia- 
t ions have on the aerodynamic character is t ics  of the configurations. 
Newtonian estimates, determined by use of unpublished closed-form expres- 
sions, of the l i f t  and drag character is t ics  of both the e l l i p t i c  and 
c i rcu lar  cone bodies a l so  have been included and compared with r e su l t s  
obtained experimentally on the body shapes. 

In  order t o  determine the variations tha t  occur i n  the characteris- 
t i c s  of a given vehicle design with and without nose and leading-edge 
rounding, t e s t s  were repeated on several representative configurations 
with rounded noses and leading edges. These configurations included a 
loo half-angle spherically blunted half-cone body studied both as a 
round-bottom and a flat-bottom configuration along with a flat-bottom 
half-cone having a f la t  canted nose. A comparison of the results 
obtained on these bodies with and without rounding are presented i n  
figure 24. These results show t h a t  leading-edge r ad i i  on the order of 
those associated with r e a l i s t i c  vehicle designs ( r / R  = 0.10) generally 
have small ef fec ts  on the overal l  longitudinal character is t ics  of these 
configurations throughout the angle-of -attack range. The differences 
tha t  do occur are most noticeable i n  the very low and rather  high 
(a > 400) angle-of-attack range. The differences between configurations 
with sharp and blunted leading edges also tend t o  become more s igni f i -  
cant f o r  low-fineness-ratio bodies having large canted noses as can be 
seen by comparing the r e su l t  presented i n  figure 24(c) with tha t  shown 
i n  f igures  24(a) and (b) .  
only negligible e f fec ts  due t o  t h i s  blunting f o r  a l l  three configura- 
t ions.  Generally, then, it appears tha t  the data  presented i n  t h i s  

Lift-drag ra t io ,  however, appears t o  show 

B 

T 
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investigation f o r  vehicles having sharp leading edges should be repre- 
sentative of the character is t ics  of a r e a l i s t i c  vehicle design and pro- 
vides a useful means of comparing the aerodynamic character is t ics  of a 
wide range of l i f t i n g  body shapes. O f  course, the e f fec ts  of leading- 
edge rounding must be included i n  determining the character is t ics  of 
any f inal ized vehicle design. 

Spherically Blunted Round- and Flat-Bottom Half-Cones 

The e f f ec t s  of varying nose bluntness r a t i o  on the values of 
(L/D),, and CL,- of the round-bottom half-cone ser ies  i s  presented 
i n  f igure 25. It may be seen from t h i s  figure tha t  both inviscid 
Newtonian theory and experiment show tha t  values of (L/D)ma of the 
more slender half-cone bodies axe reduced due t o  s l i gh t  
nose bluntness. Nose bluntness c l y  small reductions, 
however, i n  the values of (L/D)- rger half-angle half-  
cones. Increasing the bluntness of the various half-cone bodies reduces 
the values of of the configurations and these values approach 
tha t  of a hemisphere at  the higher values of bluntness ra t io .  Newtonian 
theory without viscous corrections gives re la t ive ly  good predictions of 
the 
t h i s  theory overpredicts the 

(L/D)- 

(L/D)- 

(L/D)- values of the more blunt body shape; however, as expected, 

(L/D)- values of the more slender, higher 
configurations where viscous e f f ec t s  become important. 

In  order t o  ascertain the extent t ha t  viscous forces account f o r  the 
difference between experimental and predicted values of 
mates were made of the skin f r i c t i o n  f o r  several of the more slender 
sharp half-cone bodies at  zero angle of attack. 
made by using the following equation obtained from reference 9 and modi- 
f i ed  f o r  cones as suggested i n  reference 10: 

(L/D)-, e s t i -  

These estimates were 

For the tunnel conditions considered, a constant value of 0.86 w a s  
assumed f o r  C. Since the value of (L/D)- of these half-cone bodies 

occurs at an angle of attack near a = Oo, skin-friction approximations 
determined by using t h i s  procedure should provide a f a i r l y  re l iab le  
estimate of skin f r i c t i o n  at (L/D)-. By combining these viscous 
corrections with inviscid Newtonian calculations, a difference of l e s s  
than 5 percent w a s  obtained between experimental and predicted values 



of (L/D)- f o r  these sharp half-cone bodies. Therefore, the dif- 
ference between experimental and inviscid Newtonian predictions of 
(L/D)- 

i s  

increased by increasing cone half-angle regardless of the body nose 
bluntness. This increase i s  due t o  the increase i n  the r a t i o  of the 
l i f t i n g  surface area t o  planform area as cone half-angle i s  increased. 

Figure 26 presents experimental r e su l t s  and Newtonian predictions 

shown i n  figure 25 is  due primarily t o  yiscous effects .  Both 
experiment and Newtonian theory show tha t  the value of C 

L, - 
f o r  a ser ies  of spherically L, - of the values of (L/D)- and C 

blunted flat-bottom and round-bottom half-cone bodies of varying cone 
half-angle. 
ra t io ,  h/R = 0 and h/R = 0.4. As pointed out i n  reference 7 ,  both 
experiment and theory show tha t  the more slender flat-bottom conf'igu- 
ra t ions have a higher (L/D),, than the round-bottom configurations. 
However, as cone angle i s  increased, the difference i n  
reduced u n t i l  f o r  a cone half-angle of about 40° there i s  essent ia l ly  
no difference between the round-bottom and the flat-bottom conf'igura- 
t ions.  Although increasing the bluntness r a t i o  i s  shown t o  reduce the 
magnitude of the (LID)- value of these bodies, the (L/D)- char- 
ac t e r i s t i c s  of these configurations follow the same trend regardless of 
nose bluntness. 

Results are  presented f o r  two values of nose bluntness 

(L/D)- is  

As previously mentioned, CL,- of the round-bottom half-cone 

CL,- of the flat-bottom bodies, on the other hand, i s  not as 
bodies increases with increasing cone half-angle as predicted by theory. 
The 
great ly  affected by varying cone half-angle. Theoretical predictions 
show a very gradual reduction i n  CL,- with increasing 8, due t o  
an increase i n  the downward force of the upper conic surface, whereas 
experimental data show an increase i n  C 

s e r i e s  as 8, increases up t o  a value of 8, = 30'. To explain t h i s  
behavior, it should be pointed out t ha t  r e su l t s  presented i n  reference 11 
show that f la t  l i f t i n g  surfaces operating a t  high angles of attack 
( CL,- occurs at  a = 50' f o r  these configurations experience a 
reduction i n  surface pressure near the leading edge due t o  cross-flow 
ef fec ts  over the l i f t i n g  surface. Since the geometry of these models 
i s  such tha t  the proportion of the area affected by the pressure reduc- 
t i o n  i s  reduced as 8, increases, CL,- increases with increasing 
8,. However, as 8, continues t o  increase, the influence of the upper 
surface becomes overriding and the trend i n  C 

dicted by theory. 

f o r  the flat-bottom 
L, m3.x 

) 

follows tha t  pre- 
L, - 
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It can be seen from figure 26 tha t  the value of CL,- i s  Sub- 
s t an t i a l ly  greater  f o r  the more slender flat-bottom bodies than f o r  the 
round-bottom bodies. However, f o r  the larger  half-angle cones the 
reverse i s  t rue  and 
The crossover i s  shown 60th experimentally and theoret ical ly  t o  occur 
at a value of 8, near 35'. Nose bluntness does not produce any notable 
changes i n  the trends of C 

shown t o  increase the value of C 

CL m&x i s  greater f o r  the round-bottom shapes. 

of e i the r  of these body shapes but i s  L, maX 
f o r  both body ser ies .  L, maX 

Trends i n  the pitching-moment data  about the center of gravity f o r  
two values of nose bluntness r a t i o  are shown i n  figure 27 throughout the 
angle-of-attack range of the investigation. For convenience of pres- 
entation, t h i s  f igure shows data f o r  a round-bottom half-cone ser ies  
throughout an angle-of-attack range from -6oO t o  60°. 
pare the e f fec t  of body orientation, it should be noted t h a t  data foy 
the round-bottom configurations over the angle-of-attack range from 0' 
t o  -600 may a lso  be considered as representing data f o r  a flat-bottom 
half - cone body. 

In  order t o  com- 

The important thing t o  notice from figure 27 is  tha t  most of the 
bodies (both flat-bottom and round-bottom) exhibit  essent ia l ly  neutral  
s t a b i l i t y  about the centroid of side-view area throughout the angle-of- 
a t tack range. 
f o r  t r i m  about t h i s  center-of-gravity location. The more slender round- 
bottom and flat-bottom configurations ( 0  
stable  i n  the higher angle-of-attack range. 

Thus re la t ive ly  small control forces would be required 

= loo), however, are  re la t ive ly  

Flat-Bottom Half-Cones of Varying Nose Bluntness and Cant 

character is t ics  of L, - Figure 28 presents the (L/D)- and C 

a se r i e s  of flat-bottom loo half-angle half-cones of varying nose blunt- 
ness and nose cant. This figure shows tha t  both experimental and theo- 
r e t i c a l  values of CL,- and (L/D)- of these body shapes exhibit  
l i t t l e  change due t o  varying nose cant f o r  a given value of nose blunt- 
ness up t o  bluntness r a t io s  of about 0.6. Thus it appears t h a t  f o r  
values of h/R < 0.6, nose cant can be t a i lo red  t o  provide the desired 
pi tch character is t ics  of a given body as shown i n  reference 7 without 
regard t o  i t s  e f f ec t  on CL,= o r  ( L / D ) m a  f o r  0, = loo. As 
bluntness r a t i o  i s  increased t o  0.8, increasing nose cant i s  shown t o  
reduce both CL,- and (L/D)- up t o  a nose cant of approximately 
7 5 O .  
CL, max and (L/D)=. 

Further increases i n  cant resu l t  i n  increased values of both 
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Newtonian theory considerably overpredicts the values of CL,- 

This overprediction i s  

As  bluntness i s  increased, the r a t i o  

f o r  the l e s s  blunt body shapes but appears t o  agree f a i r l y  w e l l  with 
experiment f o r  the more blunt configurations. 
again due t o  the previously discussed large leading-edge losses associ- 
ated with the l e s s  blunt shape. 
of the area affected by the leading edge t o  the overall  l i f t i n g  area i s  
reduced, and t h i s  f a c t  explains the closer agreement between theory and 
experiment f o r  the blunt models. 

Overprediction of (L/D)-, using inviscid Newtonian theory, of 
the less blunt body shapes i s  due largely t o  the increased influence of 
viscous e f f ec t s  on these higher (L/D)- configurations rather  than t o  
loss  i n  l i f t  near the leading edge. 
occurs at an angle of a t tack 
at  which cross flow becomes important. (See ref.  11.) 

This is  t rue  because (L/D)- 

(a C SO0) w e l l  below the angle of a t tack 

The moment character is t ics  of t h i s  se r ies  of body shapes were 
discussed i n  reference 7. 

Conic-Sectored Bodies 

I n  an e f f o r t  t o  evaluate the e f f ec t s  of eliminating the drag- 
producing, low-lift regions of the round-bottom conic half-bodies, t e s t s  
w e r e  made on a se r i e s  of conic-sectored bodies which varfed the body 
radial cutoff angle from a value of $ = Oo (half-cone) t o  $ = 600. 
The r e su l t s  of these tests are  presented i n  f igure 29 and show 

and (L/D),, of the sectored body t o  CL,- and (L/D)- of the 

half-cone body plot ted against body rad ia l  cutoff angle ( 9 ) .  

C L, max 

For the  sharp-nose configurations, Newtonian theory estimates of 
of the sectored body t o  C L , ~  the  var ia t ion i n  the r a t i o  of C 

of the  half-body show a rather  gradual i n i t i a l  r a t e  of increase i n  t h i s  
r a t i o  with increasing r ad ia l  cutoff angle; however, the increase i n  
t h i s  r a t i o  shows a more accelerated ra te  of change as values of rad ia l  
cutoff angle continue t o  increase above This type of varia- 

with # should be expected since the t i o n  i n  the r a t i o  of C 

r a t i o  of the l if t ing area t o  planform area increases very slowly as 
r ad ia l  cutoff angle increases from the half-cone configuration. 
as # continues t o  increase, the r a t i o  of l i f t  producing area t o  plan- 
form area continues t o  increase u n t i l  at  the higher values of $ almost 
all the exposed area is  primarily l i f t  producing. Experimental results 
follow approximately the same trend as predicted by theory up t o  values 
of $ = 45O. Above t h i s  value of g, experimental r e su l t s  show a marked 

L, Inax 

= 30°. 

L, - 
However, 



f a l l  off from the predicted resu l t s .  
reduced pressure near the leading edge which, at these higher values 
of 
near the vehicle leading edge occurs regardless of the value of cutoff 
angle. For small values of j$ (bodies approaching the half-cone con- 
figuration) t h i s  reduction occurs on the side o r  nonlift ing area of the 
vehicle and has l i t t l e  o r  no e f f ec t  on l i f t .  
values of 
producing area of the configuration, and experimental r e su l t s  would be 

the sector  t o  CL,- of the half-cone. 

This fal l -off  i s  again due t o  the 

This reduction i n  pressure 9, is  f e l t  primarily as a loss i n  l i f t .  

However, f o r  the higher 
9 (@ > 4 5 O )  this  reduction occurs primarily over a l i f t -  

expected t o  f a l l  below the predicted values of the r a t i o  of C of 
L, = 

The pre di c t  e d r a t i o  of of the sector t o  of 

the half-cone appears t o  vary i n  approximately a l i nea r  fashion with 
increasing j$. Experimental r e su l t s  tend t o  f a l l  below the predicted 
value of t h i s  r a t i o  because of the increased influence of the viscous 
e f f ec t s  as the value of (L/D),, of the  model increases. The dif-  
ference between the predicted and experimental results i s  further 
increased at the higher values of 
the increasing loss  i n  l i f t  with increasing j$ discussed previously. 

j$ as shown i n  figure 29 because of 

Tests were a l so  made which varied cone half-angle f o r  a ser ies  of 
configurations having a value of radial cutoff angle equal t o  45O.  
These tests show that the r a t i o  of (L/D)= of the sector t o  (L/D)- 
of the half-cone increased substant ia l ly  as 8, was increased from 10' 
t o  15'. A further increase i n  8, t o  20' resulted i n  very l i t t l e  gain 
i n  t h i s  ra t io .  Increasing cone half-angle had l i t t l e  e f fec t  on the 

r a t i o  of the various configurations. CL, max 

Figure 3 a lso  shows the e f f ec t s  of variations i n  radial  cutoff 
angle f o r  two values of bluntness ra t io .  The experimental results indi- 
cate that  bluntness tends t o  increase the  r a t i o s  of both C 
(L/D)-; however, trends i n  these two parameters with increasing radial 

cutoff angle are similar f o r  both the blunt and sharp body shapes. 

and L, - 
Figure 30 presents the var ia t ion of pitching-moment coefficient 

with angle of a t tack f o r  the various conic-sectored bodies j u s t  dis- 
cussed. The moment reference center w a s  again chosen as the centroid 
of the  vehicle side-view area. 
half-angle conic-sectored series, the value of &,a;=oo increased as 
the value of @ increased. Longitudinal i n s t a b i l i t y  i s  increased i n  
the low angle-of-attack range due t o  increasing radial cutoff angle; 
however, at the higher angles of attack, s t a b i l i t y  increases with 
increasing values of 9. 

These data show tha t  f o r  the sharp loo 
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Blunting the model nose t o  a value of h/R = 0.4 produced a 
smaller increase i n  Cm,a=oo as @ increased. The blunted configu- 

ra t ions are generally shown t o  be longitudinally s table  throughout the 
angle-of-attack range; however, the degree of s t a b i l i t y  at  the higher 
angles of a t tack (a > 20°) i s  somewhat l e s s  than tha t  shown Tor the 
sharp body shapes. 

Increasing the cone half-angle f o r  the # = 450 conic-sectored 
bodies reduced the nose-up pitching moment of both the sharp- and blunt- 
nose body shapes. 
of-attack range due t o  increased 8,. On the other hand, increasing 

8, 
of-attack range (a > 2 5 O ) .  
t o  0.4 produced no change i n  the trends of these comparisons but did 
tend t o  reduce the degree of change i n  the pitching-moment character- 
i s t i c s  of the configurations due t o  varying cone apex angle. 

In s t ab i l i t y  was  also reduced through the low angle- 

resulted i n  decreased longitudinal s t a b i l i t y  over the high angle- 
Increasing the  nose bluntness r a t i o  from 0 

E l l i p t i c  Half-Cone Bodies 

The e f f ec t s  of varying body span-height r a t i o  on the longitudinal char- 
a c t e r i s t i c s  of a ser ies  of round-bottom e l l i p t i c  half-cone bodies were 
also investigated. Since in te rna l  storage capacity i s  an important 
consideration from the standpoint of vehicle design, it would be in te r -  
esting t o  observe the e f fec t  t ha t  varying span-height r a t i o  (b/a) has 
on the l i f t  and drag character is t ics  of these e l l i p t i c  bodies having a 
constant body volume. 
bodies of equal volume, they may be represented by an equivalent c i r -  
cular cone of the same length and of equal volume defined by the 
parameter 

I n  order t o  make t h i s  comparison f o r  e l l i p t i c  

eeq = t an .  -1 @ 
2 t  

and (L/D)- with €'Ieq of ,- % Figure 31 shows the  variation i n  

these e l l i p t i c  half'-cones f o r  values of 
Although the volume of t h i s  equivalent c i rcu lar  cone i s  exact f o r  the 
sharp o r  unblunted configurations only, the e r ro r  i n  volume due t o  nose 
bluntness shape i s  l e s s  than 1 percent f o r  values of h/R 5 0.4 and is, 
therefore, used f o r  comparing the character is t ics  of the e l l i p t i c  bodies 
of bluntness r a t i o  0.4 also. 

b/a of 0.7, 1.0, and 2.0. 

It may be seen from figure 31 t ha t  (L/D)- is  increased by 

increasing body span-height r a t i o  regardless of equivalent cone half- 
angle o r  body bluntness. The value of C i s  a l so  shown t o  L, = 

P 

M 

u 

Li 



increase with increasing b/a; however, t h i s  e f fec t  appears t o  be 

Newtonian theory show the same trends as those exhibited by the experi- 
mental data. As previously mentioned, however, f o r  the more slender 
bodies the inviscid theory great ly  overpredicts the magnitude of this 
parameter. Trends i n  CL- p redicted by theory a l so  follow very 
closely those obtained experimentally. It should be noted that theory 
agrees quite well with experimental resu l t s  f o r  the e l l i p t i c a l  bodies 
having span-height r a t io  of 0.5. The agreement between theory and 
experiment becomes increasingly poorer as b/a i s  increased and 
undoubtedly t h i s  change resu l t s  f romthe reduction i n  leading-edge 
pressure associated with the more nearly flat-bottomed highly eccentric 
bodie 6. 

reduced at  the higher values of Oeq. Predictions of (L/D)- using 

Y 

Although the resu l t s  presented i n  figure 31 provide a basis  of 
comparing the e f fec ts  of b/a 
body geometric parameters other than volume are  of i n t e re s t  i n  com- 
paring the longitudinal character is t ics  of a ser ies  of body shapes. 
The e f fec ts  of body height and planform area should also be considered 
i n  evaluating the e f fec t  of b/a on the l i f t  and drag character is t ics  
of t h i s  se r ies  of e l l i p t i c  half-cone body shapes. 
the var ia t ion of C and (L/D)- with b/a f o r  e l l i p t i c  half-  

bodies of constant height with 
area with O x y  = 20' where body length is  assumed constant. As previ- 
ously pointed out, i f  vehicle volume i s  of primary concern, 

i s  also increases s l i gh t ly  with increasing b/a. The value of C 

shown t o  increase s l igh t ly  with increasing b/a f o r  t h i s  case. If 
vehicle planform area is  a controlling design cr i ter ion,  an even more 
marked increase i n  (L/D)- i s  noted with increasing b/a. For t h i s  

i s  s l i gh t ly  reduced by variation i n  b/a. case the value of C 
I n  the case of a design where vehicle height i s  of primary importance, 
however, t h i s  f igure shows tha t  
increasing b/a whereas the value of 
increasing b/a. 
f igurations,  but the e f fec ts  of variations i n  b/a on (L/D),, axe 
somewhat reduced due t o  bluntness whereas the e f f ec t s  on CL,- are 
increased. Although Newtonian theory does not adequately predict  the 
experimental resul ts ,  especially f o r  the more slender bodies, it does 
provide a useful means f o r  predicting the trends i n  both CL,- and 

f o r  e l l i p t i c  bodies of constant volume, 

Figure 32 presents 

L, maX 
Ox, = 20° and f o r  constant planform 

(L/D),, 

L, max 

L, maX 

(L/D),, is  s l igh t ly  reduced due t o  
CL,- shows some increase with 

Similar trends are also shown f o r  the blunted con- 

( L/D),, 

The variation i n  pitching-moment coefficient of several e l l i p t i c  
h a - c o n e s  of different  span-height r a t i o  with angle of a t tack are 
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shown i n  figure 33. Results are  presented f o r  two cone ve r t i ca l  semi- 
apex angles (exz = loo and 20°) and two bluntness r a t io s  (h/R = 0 and 
0.4). This figure shows t h a t  the longitudinal s t a b i l i t y  i s  reduced as 
body span-height r a t i o  is  increased f o r  both the 
€Ixz = 200 e l l i p t i c  half-bodies. The nose-up pitching-moment coeffici-  
ent near a = Oo is  also reduced as b/a increased f o r  the e,, = 10’ 
body ser ies  but w a s  not s ignif icant ly  changed with b/a f o r  €Ix, = 20° 

e,, = 100 and 

a 

kl 

bodies. Similar trends were noted f o r  the blunted configurations; how- 
ever the nose-up pitching-moment coefficient w a s  s l igh t ly  increased and 
the vehicle s t a b i l i t y  reduced due t o  increased nose bluntness. L 

1 
4 
3 
7 

Ratio of Maximum L i f t  t o  Minimum Drag 

It has been pointed out i n  reference 3 t h a t  large reductions i n  
peak deceleration can be effected by u t i l i z ing  variations i n  the result- 
ant aerodynamic force of a reentry configuration. Since the degree of 
l i f t  modulation at ta inable  on a given vehicle i s  shown i n  reference 3 
t o  be largely a function of the r a t i o  of the reentry t ra jec tory  param- 

it would be of i n t e re s t  t o  compare the value of eter ( cL,m/cD,min)> 
t h i s  r a t i o  f o r  the group of bodies discussed i n  t h i s  report. 
presents the value of 

large var ie ty  of these body shapes of varying body geometry and nose 
bluntness. This figure indicates t ha t  i n  general the value of 

varies over a relat ively narrow band at  a given 

Figure 34 
as a function of (L/D) f o r  a ‘L, -/ ‘D, min m8x 

and can be reasonably well approximated by the logarithmic 
‘L,= IC D,min 
(L/D),, 
relationship indicated i n  figure 34. 
cates that the r a t i o  of the maximum l i f t  t o  minimum drag of a vehicle 
i s  largely influenced by the maximum lift-drag r a t i o  of the body. 
fo r  simple lifting-body configurations such as considered i n  t h i s  study, 
vehicles f a l l i n g  i n  a specified range of 

This empirical relationship fndi- 

Thus 

(L/D)- can be expected t o  

provide very l imited variation i n  the value of the r a t i o  CL,- D,min I“ 
due t o  variation i n  configuration geometry. 

CONCLUSIONS 

An investigation has been made i n  the Langley 11-inch hypersonic 
tunnel at  a Mach number of 9.6 t o  determine the longitudinal aerodynamic 
character is t ics  of a wide variety of l i f t i n g  body shapes of varying 
cross section and nose bluntness. 
t h i s  investigation have l ed  t o  the  following conclusions: 

Analysis of the results obtained i n  
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1. The results of limited t e s t s  on models of varying leading-edge 
bluntness indicate that leading-edge radii representative of r e a l i s t i c  
vehicle designs, i n  general, have small ef fec ts  on the longitudinal 
character is t ics  of these bodies. 

''8 

2. The more slender flat-bottom half-cone bodies have higher maxi- 
mum l i f t -drag  r a t io s  and maximum l i f t  coefficients than the round-bottom 
configurations of the same geometry and size. The value of maximum l i f t  
coefficient remains essent ia l ly  constant f o r  the flat-bottom half-cones 
as cone half-angle increases but shows a substant ia l  increase w i t h  
increasing cone half-angle f o r  the round-bottom case. Maximum l i f t -drag 
r a t i o  falls off w i t h  increasing cone half-angle u n t i l  f o r  a cone half- 
angle of 40° there  i s  essent ia l ly  no difference i n  t h i s  parameter f o r  
the round-bottom and flat-bottom half-cones. 

3 .  Variations i n  nose cant are found t o  have l i t t l e  e f fec t  on tHe 
maximum l i f t  coefficient and maximum lift-drag r a t i o  of the flat-bottom 
half-cone ser ies  f o r  values of nose-bluntness r a t i o  up t o  about 0.6. 

4. The r e su l t s  of tests on the conic-sectored bodies indicate that 
c elimination of the drag-producing, low-lift  regions of the round-bottom 

half-cones increased the maximum l i f t  coefficient and maximum lift-drag 
r a t i o  of the configurations. 

* 

5. For e l l i p t i c  half-cone bodies of constant length, i f  body height 

For 
i s  held constant, maximum lift-drag r a t i o  decreased and maximum lift 
coefficient increased as body span-height r a t i o  was increased. 
bodies of constant volume, span-height r a t i o  was  found t o  have re la t ive ly  
small ef fec ts  on both maximum l i f t  coefficient and maximum l i f t -drag  
rat io .  However, i f  the model planform area were held constant, the 
maximum l i f t -drag  r a t i o  increased markedly with increasing span-height 
r a t i o  whereas maximum l i f t  coefficient w a s  s l i gh t ly  reduced. 

6. The value of the reentry t ra jec tory  parameter, the r a t i o  of 
maximum l i f t  coefficient t o  minimum drag coefficient, can be correlated 
as a simple re la t ion  i n  terms of the maximum l i f t -drag r a t i o  of the body. 

7. For these body shapes, Newtonian theory w a s  found t o  provide an 
effect ive means of estimating the trends i n  the l i f t  and drag charac- 
t e r i s t i c s  and, i n  fac t ,  a l so  provided reasonable estimates of the magni- 
tudes of these parameters where viscous e f f ec t s  and leading-edge pressure 
reductions were not of major importance. 

Langley Research Center, 
National Aeronautics and Space Administration, 

4 Langley Field, Va., March 20, 1961. 
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sB 31 3.14 in. 2 

SB/SP = 1.00 

i D 3.00 __--- I 

(c) Round-bottom quarter-spheric body. 

Figure 1.- Continued. 
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b/a 

h/R 
b, in. 
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(d) Elliptic half -cone series. 

Figure 1. - Continued. 
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Round-bottom half-cone ser ies ;  Bc = loo, zoo, 30°, 40'; h/R=0.4 

Elliptic half-cone series; b/a = 0.5; e,, = loo, ZOO; b/a = 2.0; 
e,, = 100, ZOO, 30°; h / ~  = 0.4. 

Conic-sectored series; = 00, 1 5 O ,  30°, 45O, 60°; Bc = loo; h/R = 0.4. 

spnenencally Dlunted flat-bottom Mi -cone  ser ies ;  
8, = 100, ZOO, 30°, 40'; h/R = 0.4. 

Flat-bottom half-cone se r i e s  of varying nose bluntness and cant; 
h/R= 0.2, 0.4, 0.6, 0.8; ec = 100; = 600. L-61-1064 

Figure 2.- Photographs of representative models of each body series. 
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Figure 17.- Longitudinal characteristics of the conic-sectored series. 
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Figure 21.- Longitudinal characteristics of the elliptic half-cone 
series. h/R = 0. 
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Figure 22.- Longitudinal characteristics of the elliptic half-cone 
series. h/R = 0.2. 
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